Руководство по изготовлению печатных плат в домашних условиях

Содержание:

Промышленное изготовление печатных плат электроники

Технологии изготовления печатных плат электроники предусматривают условия производства с чистой средой. Атмосфера и объекты производственных помещений контролируются автоматикой на присутствие загрязнений.

Структура гибкой ПП: 1, 8 — полиимидная плёнка; 2, 9 — связывающее 1; 3 -связывающее 2; 4 — шаблон; 5 — базовая полиимидная плёнка; 6 — клейкая плёнка; 7 — шаблон

Многие компании-производители электронных печатных плат практикуют уникальные производства. А в стандартном виде изготовление двухсторонней печатной электронной платы традиционно предусматривает следующие шаги:

Изготовление основания

  1. Берётся стекловолокно и пропускается через технологический модуль.
  2. Пропитывается эпоксидной смолой (погружением, распылением).
  3. Стекловолокно прокатывают на станке до желаемой толщины подложки
  4. Сушка подложки в печи и раз на крупные панели.
  5. Панели располагаются стопками, чередуясь с медной фольгой и подложкой, покрытой клеем.

Наконец, стопки помещают под пресс, где при температуре170°C и давлении 700 кг/мм2, прессуют 1-2 часа. Эпоксидная смола твердеет, медная фольга связывается под прессом с материалом подложки.

Сверление и лужение отверстий

  1. Берутся несколько панелей подложки, укладываются одна на другую, жёстко закрепляются.
  2. Сложенная стопка помещается в станок с ЧПУ, где высверливаются отверстия по схемному рисунку.
  3. Сделанные отверстия очищаются от излишков материала.
  4. Внутренние поверхности токопроводящих отверстий покрываются медью.
  5. Непроводящие отверстия остаются без покрытия.

Производство рисунка схемы печатной электронной платы

Образец схемы печатной платы создаётся посредством аддитивного либо субтрактивного принципа. В случае аддитивного варианта, подложка покрывается медью по желаемой схеме. При этом необработанной остаётся часть вне схемы.

Технология получения отпечатка схемного рисунка: 1 — фоторезистивная панель; 2 — маска электронной печатной платы; 3 — чувствительная сторона платы

Субтрактивным процессом, прежде всего, покрывается общая поверхность подложки. Затем отдельные участки, не входящие в рисунок схемы, вытравливаются либо вырезаются.

Как проходит аддитивный процесс?

Фольгированная поверхность подложки предварительно обезжиривается. Панели проходят вакуумную камеру. За счёт вакуума слой положительного фоторезистивного материала плотно обжимается по всей фольгированной площади.

Положительным материалом для фоторезиста выступает полимер, обладающий способностью растворимости под излучением ультрафиолета. Условия вакуума исключают возможный остаток воздуха между фольгой и фоторезистом.

Шаблон схемы укладывается поверх фоторезиста, после чего панели подвергаются интенсивному воздействию ультрафиолета. Поскольку маска оставляет прозрачными области схемы, фоторезист в этих точках попадает под УФ излучение и растворяется.

Затем маска снимается, а панели опыляются щелочным раствором. Этот, своего рода проявитель, помогает растворить облучённый фоторезист по границам областей рисунка схемы. Так, медная фольга остаётся открытой на поверхности подложки.

Далее панели гальванируются медью. Медная фольга выступает катодом в процессе гальванизации. Открытые участки гальванируются до толщины 0,02-0,05 мм. Области, остающиеся под фоторезистом, не гальванируются.

Медные разводы покрывают дополнительно оловянно-свинцовым составом или иным защитным покрытием. Этими действиями предотвращается окисление меди и создаётся резист на следующую стадию производства.

Ненужный фоторезист удаляется с подложки с помощью кислотного растворителя. Медная фольга между рисунком схемы и покрытием обнажается. Так как медь схемы печатной платы защищена оловянно-свинцовым составом, здесь проводник не подвержен воздействию кислоты.

SVG —> Текстолит

Вся статья, на самом деле, написана только ради того, чтобы поделиться с миром самой правильной бумагой для ЛУТа. Вот она:

Также, у нас есть информация о пригожести бумаги Black Diamond. Другие марки могут обладать необходимыми свойствами, а могут нет. HP не подходит точно (плавится под утюгом), Lomond условно подходит, «но как-то средне». Можно экспериментировать с разной глянцевой фотобумагой для струйной печати. Пишите в коменты чо как с другими бумагами )

Алгоритм:

Ставим утюг греться на максимальную температуру.
Шлифуем текстолит с обеих сторон мелкой наждачкой, сантехнической абразивной губкой (, klirichek), губкой для посуды или абразивным ластиком.
Если Ваш принтер умеет кушать форматы отличные от A4, Отрезаем от А4 полоску по размеру изображения. Бумага сверхценная: если Вам удалось её достать, надо экономить.
Заталкиваем в принтер узкой стороной. Проверяем, что изображение двух слоёв платы не превышает ширины отрезанной полоски по ширине и 210 по высоте.
Печатаем лазерником с оригинальным тонером в картридже на этой глянцевой фотобумаге для струйных принтеров.
Не прикасаясь к тонеру, разрезаем слои на две отдельные бумажки и дырявим габаритные отверстия на обоих слоях.
Вставляем прямые штырьки (например, от PLS/PLD гребёнки) в 4 габаритных отверстия.
Насаживаем передний слой.
Проглаживаем равномерно, сильно не надавливая, до пожелтения бумаги (или еще каких-либо знаков свыше, это всё-таки ЛУТ: совсем избавиться от магии, наверно, невозможно)

Штырьки можно вытащить когда бумага начнет прилипать и потеряет способность смещаться.
Не отдирая бумагу от текстолита, повторяем последние три пункта с задним слоем.
Даём текстолиту остыть: можно пока поставить греться чайник и начать разбодяживать персульфат аммония.

С остывшего текстолита (без воды, это архиважно) аккуратненько отодрать лишнюю бумагу. Тонер должен сойти вместе с глянцевым слоем фотобумаги, так и было задумано.

В случае ошибок, можно стереть один из слоёв ацетоном, подложить уже оторванную бумажку противоположного слоя (чтобы тонер не отлип от платы и не перевёлся на доску, на которой Вы гладите) и повторить.

Что мы можем?

Трассировка печатных плат

Трассировка одно и двусторонних печатных плат по образцу

Образец печатной платы. К сожалению, мы не сможем выполнить трассировку по фотографии платы;

Технологические ограничения: толщины проводников, зазоры между проводниками, расположения отверстий и элементов и другие важные нюансы конструкции.

Трассировка печатной платы по техническому заданию

Необходимые входные данные:

Схема электрическая принципиальная в графических форматах или в формате САПР, произвольный эскиз в графических форматах и даже скриншот или фотография эскиза схемы «от руки»;

Перечень электронных компонентов с указанием типов корпусов; чертежи нестандартных компонентов;

Описание элементов платы: место расположения и диаметры крепёжных отверстий, место расположения разъёмов; области платы, на которые нельзя устанавливать компоненты;

Технологические ограничения: типовая и минимальная ширина проводников, зазоры между проводниками, использование полигонов, особенности размещения компонентов на плате и другие важные нюансы конструкции;

Критическое расположение цепей (если таковые имеются);

Количество проводящих слоев;

Желаемый и максимальный размер готовой платы.

Каталог ТеПро. Скачать… (2,17 МБ)

Изготовление печатных плат. Технические возможности

Принимать в работу проекты, выполненные во всех системах проектирования, позволяющих экспорт в формат «Gerber». Например,
PCAD4.5/8.5, PCAD200x, ACCEL EDA, Altium Designer, CAM350, Sprint Layout и др., а так же в формате
Gerber.

Изготовлять с промышленным качеством печатные платы с металлизацией на импортном материале FR4, Rogers RO4003C и RO4350B
толщиной 0.3, 0.5, 0.8, 1.0, 1.55, 2.0 мм
 — Односторонние платы без металлизации отверстий, в том числе и на металлическом теплоотводе.
 — Двухсторонние платы с металлизацией отверстий (в том числе и односторонние с металлизацией отверстий).
 — Многослойные, до 16 слоев (толщиной от 0,5 мм при 4 слойной плате).
 — Платы на материале ФЛАН, Rogers и другие (материал заказчика)1).
 — Платы на алюминиевой подложке.
 — Гибкие печатные платы.
 — Платы по бессвинцовой технологии.

Наносить защитную паяльную маску зеленого, белого, чёрного, красного, синего и жёлтого цветов.

Выполнять бессвинцовое покрытие контактных площадок (процесс Sterling) (по умолчанию).

Выполнять горячее лужение контактных площадок припоем .

Выполнять бессвинцовое покрытие контактных площадок (0,05 мкм) с подслоем никеля (ENIG).

Выполнять гальванические покрытия краевых разъемов Ni (2,5-5,0 мкм) или Ni/Au (Au: 0,5-0,8 мкм,
Ni: 2,5–5,0 мкм)

Изготовлять печатные платы с металлизированными периферийными полу-отверстиями;

Изготовлять печатные платы с металлизированными торцами

Выполнять электротестирование печатных плат на установке с «летающими пробниками» (Flying Probe Tester);

Выполнять шелкографическую маркировку;

Выполнять скрайбирование2) (разделение плат на заготовке подфрезеровкой с двух сторон)


1) Нестандартные платы и платы на материале Заказчика принимаются в работу только под ответственность Заказчика без гарантии качества
и сроков исполнения заказа.
2) Скрайбирование — это разделение групповой заготовки на отдельные платы путем подфрезерования на 1/3 толщины материала.
Указанный способ позволяет производить групповой монтаж печатных плат, с последующим легким разделением заготовки на отдельные
печатные платы (вручную или с помощью специальных дисковых разделителей). Скрайбирование производится от края до края технологической
заготовки только по прямой линии. При этом по умолчанию мы размещаем платы на расстоянии 0,5 мм друг от друга.

Выполнять заказ в короткий срок;

Работать со сверхмалыми заказами (от 0,1 дм²)

Доставлять готовые заказы:
 — по Москве собственной курьерской службой;
 — по России курьерской службой “Major-Express” (www.major-express.ru), а также «Почтой России» (www.pochta.ru). Для вашего удобства стоимость доставки включается в счет.Доставка другими службами (“Pony Express” (www.ponyexpress.ru), «СПСР Экспресс» (www.cpcr.ru) и т.п.) возможна в случае самостоятельного вызова курьера и оплаты доставки.

Вести работу с наличным и безналичным расчетом

Контроль качества сборки печатных плат

АО «Алмаз-СП» уделяет особое внимание контролю качества сборки печатных плат на всех этапах сборочно-монтажных работ. Все печатные платы проходят необходимые испытания и сопровождаются гарантией

Электромагнитная совместимость (ЭМС)

Электромагнитная совместимость (ЭМС) — способность технических средств (ТС) функционировать с заданным качеством в заданной электромагнитной обстановке и не создавать недопустимых электромагнитных помех другим техническим средствам. ТС — любые устройства, использующие электромагнитные (ЭМ) явления. Например: устройства усиления, переключения, преобразования. Электромагнитная помеха — любое ЭМ явление, способное вызвать нарушение работы ТС.

Электромагнитная совместимость нарушается, если уровень помех слишком высок или помехоустойчивость оборудования недостаточна. В этом случае возможно нарушение в работе компьютеров, выдача ложных команд в системах управления, навигации, что приводит к ужасным катастрофам.

Механические испытания

Избежать механических воздействий на электротехническое и всевозможное другое оборудование в современном мире практически невозможно, поэтому должна быть проведены испытания и оценка стойкости к влиянию внешних механических факторов.

Электротехническое оборудование относится к группе наиболее чувствительной к вибрационным и ударным (далее — механическим) нагрузкам, т. к. оно имеет в структуре функциональных схем автоматические выключатели (переключатели), электромагнитные пускатели, реле и размыкатели различного типа, показывающие приборы контроля (амперметры, вольтметры и др.). Эти выводы подтверждаются и зарубежными исследованиями.

Изделия испытываются на:

  • виброустойчивость, вибропрочность при воздействии гармонической (синусоидальной) вибрации;
  • удароустойчивость, ударопрочность при воздействии одиночных и многократных ударов;
​Климатические испытания

Климатические испытания на воздействие внешних факторов:

  • воздействие пониженных температур;
  • воздействие повышенных температур;
  • воздействие повышенной влажности;
  • циклическое воздействие температур.

Виды климатических испытаний по отдельным параметрам:

  • диапазон температур от –70°С до +180°С;
  • точность поддержания режимов ±0,5°С;
  • относительная влажность от 10 до 98%;
Функциональные испытания

Функциональные испытания сводятся к проверке соответствия выходных сигналов последовательности входных испытующих воздействий, т.е. оценивается способность вашего изделия выполнять свое функциональное предназначение, заложенное в ТЗ или ином документе.

Обширный приборный парк и высокая квалификация наших сотрудников позволяют провести испытания вашего оборудования на соответствие требованиям, так и провести испытания по методикам, составленным нашими специалистами на основе ваших ТЗ.

Изоляционные испытания

В процессе работы электроприборов изоляция подвергается влиянию различных факторов. К ним относится электрическое напряжение, механическое и температурное воздействие. Постоянное напряжение обозначает действующее в течение длительного срока значение, не превышающее 15% для сетей до 220 кВ, 10% — для 330 кВ, и 5% — до 500 кВ и более. Кроме этого, существует внутреннее перенапряжение и атмосферное. Первое появляется при аварийных ситуациях или коммутационных процессах, характеризуется малым временем воздействия (до 10 секунд) и большой амплитудой.

Безопасность, обеспечивающаяся изоляцией, должна гарантировать диэлектрические свойства. Эти требования предусмотрены различными стандартами и ГОСТ. Несоблюдение их приводит к возможному возникновению ущерба и риска.

Требования, предъявляемые к техническим характеристикам изолятора, довольно жёсткие, они заключаются в следующем:

  • обеспечение надёжности работы при возникновении различного рода перенапряжений;
  • создание условий для безопасной работы человека;
  • недопущения потерь мощности.

И пр.

Обзор файлов проекта

После проектирования печатной платы в нашей программе, ключевым шагом является создание файлов, обычно называемых «Gerber». Это набор форматов, описывающих наш проект в форме, понятной станкам, и значительно облегчающий работу людей, занимающихся подготовкой производства. Они позволяют также сравнить проект с установленными для него ограничениями и сразу обнаружить потенциальные проблемы

Хотя проверка в основном выполняется автоматически, чаще всего у нас есть инженер, который обратит наше внимание, когда, например, дорожки расположены слишком близко друг к другу, пояски контактных площадок слишком малы или слой шелкографии находит на контактные площадки. В случае незначительных проблем инженер может сам предложить способ их исправления, запросив одобрения заказчика

Если проблемы более серьезны, проект будет отклонен, и исправлять файлы заказчику придется самостоятельно.

Проверка печатной платы.

Макетная плата в электронных схемах

Редко какой реальный проект Arduino содержит менее 5-10 элементов схемы, соединенных между собой. Даже в простой хорошо всем известной схеме маячка применяются 2 элемента, светодиод и резистор, которые надо как-то соединять друг с другом. И тут как раз и встает вопрос о том, каким способом это сделать.


Макетная плата без пайки

На сегодняшний момент существуют следующие основные способы монтажа, которыми используются в электронике и робототехнике на этапе создания прототипов:

  • Пайка. Для этого применяют специальные платы с отверстиями, в которые вставляются детали и соединяются друг с другом пайкой (с использованием паяльника) и перемычками.
  • Cкрутка. По данной технологии контактные соединения устройств объединяются с макетной платой при помощи обмотки чистого провода к штыревому контакту.
  • Плата для монтажа без пайки. Английский вариант названия беспаечной макетной платы – breadboard.
  • Можно еще деражть контакты руками или зубами, склеивать клеем-пистолетом, скреплять изолентой или скотчем. В этой статье мы такие экзотические варианты не рассматриваем.


Макетная плата для монтажа с пайкой Самым современным вариантом для создания прототипов является беспаечная макетная плата, которая обладает несомненными преимуществами:

  • Возможность проводить отладочные работы большое количество раз, изменяя модификацию схем и способы подключения устройств;
  • Возможность соединения нескольких плат в одну большую, что позволяет работать с более сложными и большими проектами;
  • Простота и быстрота создания прототипов;
  • Долговечность и надежность.


Макетная плата Конечно, есть у этого варианта монтажа и недостатки:

  • В реальных проектах соединения у платы не будут столь же надежны, как при пайке. Любая вибрация будет потихоньку ослаблять контакты и это обязательно со временем приведет к неожиданным проблемам. Поэтому в реальных проектах используют другие виды монтажа элементов.
  • Внешний вид проектов с лапшой в виде проводов над бескрайними белыми пространствами платы нельзя назвать профессиональным и эстетичным. Хотят такой вид всегда завораживает зрителей и формирует у проекта имидж чего-то “жутко сложного, раз столько проводов”.
  • Плата с таким видом монтажа всегда будет занимать больше места за счет нависающих проводов. Значит, для нее нужен корпус больших объемов с фиксацией и защитой от вибрации.
  • Стоимость макетной платы. Пусть платы и не являются дорогими устройствами, но все равно вам нужно будет их приобрести дополнительно к микроконтроллеру и другим элементам. К счастью, сегодня на рынке есть большое количество недорогих вариантов и готовых наборов с монтажными платами в комплекте. Некоторые варианты можно найти в следующем разделе нашей статьи.

Не смотря на некоторые недостатки, альтернативных вариантов по простоте и доступности для монтажа первых схем у начинающих практически нет. Сегодня можно встретить огромное количество проектов, в которых все элементы размещены именно на макетной плате. Почти все примеры из учебников по основам робототехники и Ардуино используют этот вариант монтажа. Поэтому рекомендуем вам обязательно познакомиться с этим конструктивным элементом поближе.

Покрытия площадок печатной платы

Рассмотрим, какие бывают покрытия медных площадок. Наиболее часто площадки покрываются сплавом олово-свинец, или ПОС. Способ нанесения и выравнивания поверхности припоя называют HAL или HASL (от английского Hot Air Solder Leveling — выравнивание припоя горячим воздухом). Это покрытие обеспечивает наилучшую паяемость площадок. Однако на смену ему приходят более современные покрытия, как правило, совместимые с требованиями международной директивы RoHS. Эта директива требует запретить присутствие вредных веществ, в том числе свинца, в продукции. Пока что действие RoHS не распространяется на территорию нашей страны, однако помнить о ее существовании небесполезно. HASL применяется повсеместно, если нет иных требований

Иммерсионное (химическое) золочение используется для обеспечения более ровной поверхности платы (особенно это важно для площадок BGA), однако имеет несколько более низкую паяемость. Пайка в печи выполняется примерно по той же технологии, что и HASL, но ручная пайка требует применения специальных флюсов

Органическое покрытие, или OSP, защищает поверхность меди от окисления. Его недостаток — малый срок сохранения паяемости (менее 6 месяцев). Иммерсионное олово обеспечивает ровную поверхность и хорошую паяемость, хотя тоже имеет ограниченный срок пригодности для пайки. Бессвинцовый HAL имеет те же свойства, что и свинец-содержащий, но состав припоя — примерно 99,8% олова и 0,2% добавок. Контакты ножевых разъемов, подвергающихся трению при эксплуатации платы, гальваническим способом покрывают более толстым и более жестким слоем золота. Для обоих видов золочения применяется никелевый подслой для предотвращения диффузии золота.

Что нужно хорошей материнской платой?

На этом этапе вы должны иметь достаточное понимание того, как создаются материнские платы и какие части их составляют. Но что нужно, чтобы материнская плата считалась «хорошей»?

VRM (модуль регулятора напряжения)

Прежде чем вы сможете определить материнскую плату с хорошими VRM, вам необходимо сначала ознакомиться с несколькими компонентами, составляющими весь VRM, а именно MOSFET и Chokes:

  • MOSFET или полевые транзисторы – металл-оксидные полупроводники, представляющие собой плоские прямоугольные компоненты, обычно расположенные вокруг разъема центрального процессора. Они отвечают за снабжение процессора точным объёмом напряжения, в котором он нуждается
  • Chokes обычно расположены рядом с МОП-транзисторами и отвечают за стабилизацию токов и конденсацию в случае внезапного скачка напряжения

Найти материнскую плату с хорошим VRM звучит сложно, но, на самом деле, это проще, чем вы думаете, потому что всё, что вам нужно сделать, это подсчитать количество Chokes. Каждый Chokes соответствует одной фазе, а большее количество фаз означает лучшую стабильность.

Материнская плата начального уровня, которая имеет, по крайней мере, четыре chokes, считается нормальной, в то время как материнские платы среднего и высокого качества имеют от шесть chokes.

Если вы планируете разгонять процессор, необходимость выбора высококачественного VRM становится более важной. Стоит отметить, что многие из материнских плат, которые позволяют разгон, по умолчанию имеют лучшие VRM; аналогично, материнские платы, которые не предназначены для разгона, часто имеют упрощенный VRM

Дизайн

Хорошая материнская плата должна иметь хорошо продуманный дизайн, так как плохо размещенные компоненты могут оказать негативное влияние на работоспособность вашей системы.

Расположение ОЗУ – это то, что мы все должны учитывать при покупке кулера для процессора. Иногда оперативная память и громоздкий процессорный кулер могут блокировать друг друга.

Дизайн в наши дни – это не только размещение компонентов. Современные материнские платы подсвечиваются яркой RGB-подсветкой, имеют ЖК-экраны и элементы ручного управления!

Набор микросхем

Вы должны обратить пристальное внимание на чипсет материнской платы, потому что, как многие согласятся, вам нужны совместимые компоненты!

Чипсеты определяют совместимость с различными компонентами, особенно с процессором. Фактически, чипсеты работают только в пределах определенного семейства процессоров. Например, новые чипы Ryzen 3000 будут совместимы только с материнскими платами x470 и x570.

Чипсеты обладают различными функциями, такими как лучшая разгонная способность и дополнительная фаза питания. Так что, если вы не собираетесь разгонять компьютер, вероятно, можете обойтись более дешевой материнской платой.

Если вам нужна материнская плата с поддержкой SLI и возможностями разгона, вам нужно найти подходящую материнскую плату для ваших нужд. Сосредоточьтесь на хорошем VRM и надежном чипсете, но помните – дорого не всегда значит лучше.

Конденсаторы

Никогда не приобретайте материнскую плату с нетвердыми алюминиевыми электролитическими конденсаторами, потому что они часто заправлены проводящей жидкостью. Даже если всё сделано правильно, материнские платы, которые используют дешевые конденсаторы, очень подвержены проблемам, таким как утечки или разрывы.

Вот почему всегда замечательно иметь материнскую плату, которая использует твердотельные конденсаторы, потому что, в отличие от конденсаторов, которые содержат проводящую жидкость, они содержат твердый органический полимер.

Твердотельные конденсаторы могут выдерживать более высокий пульсационный ток, что означает, что они делают материнскую плату более стабильной. Конденсаторы этих типов также могут справляться с большим количеством тепла, делая плату более надежной и продлевая срок её службы.

Теперь вы не только знаете, из чего состоит материнская плата, но и узнали о процессе производства и о том, что именно делает материнскую плату хорошей.

Контроль качества и исправление ошибок

Листы заготовок проверяются современной системой технического зрения в присутствии сотрудника, вооруженного различными резаками и скребками. При обнаружении различий между внешним видом платы и файлом проекта сотрудник, курирующий процесс, принимает решение – является ли дефект серьезным, и плату следует забраковать (например, в случае перетравливания), или ее можно исправить вручную. Ремонт обычно производится под мощными микроскопами, поэтому результат часто бывает удовлетворительным.

Система компьютерного зрения проверяет соответствиепечатной платы файлам проекта.
 
Мелкие ошибки исправляются вручную.

Гетинакс

Односторонний фольгированный гетинакс.

Фольгированный гетинакс предназначен для изготовления плат предназначенных для работы при обычной влажности воздуха с одно- или двухсторонним монтажом деталей без металлизации отверстий. Технологическое отличие гетинакса от стеклотекстолита состоит в использовании при его производстве бумаги, а не стеклоткани. Материал является дешевым и легко штампуемым. Имеет хорошие электрические характеристики в нормальных условиях. Материал обладает недостатками: плохая химическая стойкость и плохая теплостойкость, гигроскопичность.

Отечественный фольгированный гетинакс марок ГФ-1-35, ГФ-2-35, ГФ-1-50 и ГФ-2-50 рассчитан на работу при относительной влажности 45 — 76 % и температуре 15 — 35 С°, материал основания имеет коричневый цвет. XPC, FR-1, FR-2 – импортные фольгированные гетинаксы. Эти материалы имеют основание из бумаги с фенольным наполнителем, материалы хорошо штампуются.

— FR-3 – модификация FR-2, но в качестве наполнителя вместо фенольной смолы используется эпоксидная смола. Материал предназначен для производства плат без металлизации отверстий.

— CEM-1 – материал, состоящий из эпоксидной смолы (Composite Epoxy Material) на бумажной основе с одним слоем стеклоткани. Предназначен для производства плат без металлизации отверстий, материал хорошо штампуется. Обычно молочно-белого или молочно-желтого цвета.

Прочие фольгированные материалы применяются для более жестких условий эксплуатации, но имеют более высокую цену. Их основание выполнено на основе химических соединений, позволяющих улучшить свойства плат: керамика, арамид, полиэстер, полиимидная смола, бисмалеинимид-триазин, эфир цианат, фторопласт.

«Биографическая» справка

Первая плата или точнее сказать – ее прообраз, была создана немецким инженером Хансоном Альбертом, который предложил (1902 год) формировать определенный рисунок на плате при помощи фольги медной, методом штампования или вырезания. Затем, этот рисунок, сделанный (вручную, в основном) клеили на бумажный диэлектрик. Бумагу предварительно покрывали парафином. За прошедший век, платы постоянно усовершенствовали многие известные ученые, она эволюционировала. Так, Эдисоном было предложено создавать токопроводный «рисунок» адгезивными порошками (графитовый, бронзовый).

Через 18 лет после создания первой платы, их начали производить в промышленном масштабе по меркам тех лет. Для создания детали применяли бакелит, многослойный картон, мезонит, деревянные дощечки. Процесс выглядел таким образом: материал-подложка сверлился, в небольшие отверстия проводили провода из тонкой латуни, которые, в свою очередь, прикреплялись к плате гайками и болтами. Такие «древние» платы применялись в первых граммофонах, радиоприемниках.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector