Способы получения водорода в промышленности и лаборатории

Добыча водорода в условиях домашнего хозяйства

Выбор электролизера

Для получения элемента дома необходим специальный аппарат – электролизер. Вариантов такого оборудования на рынке много, аппараты предлагают как известные технологические корпорации, так и мелкие производители. Брендовые агрегаты дороже, но качество их сборки выше.

Домашний прибор отличается малыми габаритами и легкостью в эксплуатации. Основными деталями его являются:

Электролизер — что это

  • риформер;
  • система очистки;
  • топливные элементы;
  • компрессорное оборудование;
  • емкость для хранения водорода.

В качестве сырья берется простая вода из-под крана, а электричество идет из обычной розетки. Сэкономить на электроэнергии позволяют агрегаты на солнечных батареях.

«Домашний» водород применяют в системах отопления или приготовления пищи. А также им обогащают бензовоздушную смесь, чтобы повысить мощность двигателей автомобиля.

Изготовление аппарата своими руками

Еще дешевле сделать прибор самому в домашних условиях. Сухой электролизер выглядит как герметичный контейнер, который представляет собой две электродные пластины в емкости с электролитическим раствором. Во Всемирной сети предлагаются разнообразные схемы сборки аппаратов разных моделей:

  • с двумя фильтрами;
  • с верхним либо нижним расположением контейнера;
  • с двумя или тремя клапанами;
  • с оцинкованной платой;
  • на электродах.

Схема устройства электролиза

Простой прибор для получения водорода создать несложно. Для него потребуются:

  • листовая нержавеющая сталь;
  • прозрачная трубка;
  • штуцеры;
  • пластиковая емкость (1,5 л);
  • водяной фильтр и обратный клапан.

Устройство простого прибора для получения водорода

Помимо этого, нужны будут различные метизы: гайки, шайбы, болты. Первым делом нужно распилить лист на 16 квадратных отсеков, у каждого из них спилить угол. В противоположном от него углу требуется высверлить отверстие для болтового крепления пластин. Для обеспечения постоянного тока пластины нужно подключать по схеме: плюс–минус–плюс–минус. Изолируют эти детали друг от друга с помощью трубки, а на соединении болтом и шайбами (по три штуки между пластинками). На плюс и минус насаживают по 8 пластин.

При правильной сборке ребра пластинок не будут задевать электроды. Собранные детали опускают в емкость из пластика. В месте касания стенок болтами делают два установочных отверстия. Устанавливают защитный клапан для удаления избытка газа. В крышку контейнера монтируют штуцеры и герметизируют швы силиконом.

Тестирование аппарата

Чтобы протестировать аппарат, выполняют несколько действий:

Схема получения водорода

  1. Наполняют жидкостью.
  2. Прикрыв крышкой, соединяют один конец трубки со штуцером.
  3. Второй опускают в воду.
  4. Подключают к источнику питания.

После включения прибора в розетку через несколько секунд будет заметен процесс электролиза и выпадение осадка.

Чистая вода не обладает хорошей электропроводностью. Для улучшения этого показателя нужно создать электролитический раствор, добавив щелочь – гидроксид натрия. Он есть в составах для очищения труб наподобие «Крота».

Простое вещество водород

Молекула водорода состоит из двух атомов, связанных  между собой ковалентной неполярной связью.Физические свойства. Водород — бесцветный нетоксичный газ без запаха и вкуса. Молекула водорода не полярна. Поэтому силы межмолекулярного взаимодействия в газообразном водороде малы. Это проявляется в низких температурах кипения (-252,6 0С) и плавления (-259,2 0С).
Водород легче воздуха, D (по воздуху) = 0,069;  незначительно растворяется в воде (в 100 объемах H2O растворяется 2 объема  H2).  Поэтому водород при его получении в лаборатории можно собирать методами вытеснения воздуха или воды.

Как из воды получить водород

Наиболее простым способом получения водорода из воды является электролиз. Электролиз — химический процесс, при котором раствор электролита, под воздействием электрического тока, разделяется на составные части, то есть в нашем случае вода разделяется на водород и кислород. Для этого используется раствор соды в воде и два элемента – катод и анод, на которых и будут выделятся газы. На элементы подается напряжение, на аноде выделяется кислород, а на катоде водород.

Как получить водород в домашних условиях

Реактивы используются довольно простые – купорос (медный), поваренная соль, алюминий и вода. Алюминий можно взять из под пивных банок, но прежде, его нужно обжечь, чтобы избавится от пластиковой пленки, которая мешает реакции.

Потом отдельно готовится раствор купороса, и раствор соли, раствор купороса голубого цвета, смешивается с раствором соли, в итоге получается раствор зеленого цвета. Затем в этот зеленый раствор бросаем кусочек алюминиевой фольги, вокруг него появляются пузырьки – это водород. Также замечаем, что фольга покрылась красным налетом, это алюминий вытеснил медь из раствора. Для того, чтобы собрать водород для личных целей, используйте бутылку с пробкой, в которую заранее вставлена не широкая трубка, через которую и будет выходить газ.

А теперь, внимание! Меры предосторожности. Поскольку водород взрывоопасный газ, опыты с ним нужно проводить на улице, а во-вторых реакция получения водорода проходит с большим выделением тепла, раствор может разбрызгиваться и вас попросту обжечь

Преимущества применения водорода

Водород, пребывающий в жидком состоянии, является отличным вариантом топлива для ракет. Также активно идет работа, чтобы в будущем использовать его в виде горючего для силового агрегата машин. Воплощение в жизнь данной идеи положительно скажется на экологической ситуации, так как при сгорании водорода в атмосферу не попадают опасные компоненты, наносящиеся непоправимый вред окружающей среде.

Одним из основных потребителем химического элемента являются предприятия, работающие в сфере нефтехимии и занимающиеся переработкой нефти. Здесь расход водорода, который добывается промышленным методом, достигает отметки 50% от общего числа. Большое количество полимеров, соединений углеводородного типа и масс, с пластическими свойствами, получают исключительно из водорода.

Газообразное вещество благодаря отличной теплопроводности и отсутствию в составе вредных компонентов оптимально подходит для снижения уровня нагрева турбогенераторов, характеризующихся высоким запасом мощности. В условиях повышенной температуры водород демонстрирует регенерацию, беря на себя атомы кислорода, находящиеся в оксидах металлов. Это дает возможность применять его для прямого восстановления руды.

В зависимости от отрасли газообразная консистенция выступает как основной элемент, дополнительный материал либо горючее.

Cогласно статистическим данным востребованность водорода стремительно растет и его использование каждые 15 лет удваивается в несколько раз.

Химические свойства


Доля диссоциировавших молекул водорода

Молекулы водорода Н2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н2 =2Н − 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

+Н2 =СаН2

и с единственным неметаллом— фтором, образуя фтороводород:

F2 +H2 =2HF

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

О2 +2Н2 =2Н2О

Он может «отнимать» кислород от некоторых оксидов, например:

CuO +Н2 = +Н2O

Записанное уравнение отражает восстановительные свойства водорода.

N2 +3H2 → 2NH3

С галогенами образует галогеноводороды:

F2 +H2 → 2HF, реакция протекает со взрывом в темноте и при любой температуре, Cl2 +H2 → 2HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

+2H2 → CH4

При взаимодействии с активными металлами водород образует гидриды:

2 +H2 → 2NaH +H2 → CaH2 +H2 → MgH2

Гидриды

Оксиды восстанавливаются до металлов:

CuO +H2 → Cu +H2O Fe2O3 +3H2 → 2Fe +3H2O WO3 +3H2 → W+3H2O

Гидрирование органических соединений

Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы навзывают реакциями гидрирования

. Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр. Катализатор Уилкинсона), так и гетерогенным (напр. никель Ренея, палладий на угле).

Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

Горение водорода

Водород, значит, рождающий воду. Вода получается при горении водорода  — при соединении водорода с кислородом. В ходе реакции выделяется очень большое количество энергии.

2H2 + O2 = 2H2O + Q

Значит, водород можно использовать в качестве топлива

И как со всяким топливом с водородом нужно обращаться осторожно

Получаем водород реакцией цинка с соляной кислотой.

Поджигаем водород у конца газоотводной трубки. Вначале пламя едва заметно (водород не окрашивает пламя). Постепенно стеклянная трубка раскаляется, и пламя становится желтым: соединения натрия, входящие в состав стекла окрашивают пламя.

Рис. 2. Горение водорода

Итак, водород – топливо. На водороде и кислороде могут работать реактивные двигатели. Теплоту реакции горения водорода используют для сварки и резки металлов. При сгорании водорода в чистом кислороде температура достигает 2800оС. Такое пламя плавит кварц и большинство металлов

Важно, что водород – безвредное для окружающей среды топливо, т.к. продуктом его горения является вода

Общая информация об электролизере

Электролизная установка – устройство для электролиза, требующее наружный энергоисточник, конструктивно которое состоит из нескольких электродов, которые помещены в заполненную электролитом емкость. Также данная установка может именоваться устройством для расщепления воды.

В аналогичных агрегатах ключевым техническим параметром считается продуктивность, которая значит объем вырабатываемого водорода за час и меряется в м?/ч. Неподвижные агрегаты несут такой параметр в наименовании модели, к примеру, мембранная установка СЭУ-40 формирует за час 40 куб. м водорода.

внешний вид стационарного промышленного агрегата СЭУ-40

Другие характеристики подобных устройств полностью зависят от целевого назначения и вида установок. К примеру, при выполнении электролиза воды КПД агрегата зависит от нижеследующих показателей:

  1. Уровень наименьшего электродного потенциала (электронапряжения). Для хорошего функционирования агрегата эта характеристика должна быть в диапазоне 1,8-2 В на одну пластину. Если источник электрического питания имеет напряжение в 14 В, то емкость электролизера с электролитным раствором есть смысл поделить листами на 7 ячеек. Аналогичная установка именуется сухим электролизером. Меньшее значение не запустит электролиз, а большее – сильно повысит энергитический расход;

Расположение пластин в ванной электролизной установки

  1. Чем меньше будет расстояние между пластиночными элементами, тем меньше будет сопротивление, что при прохождении большого тока приводит к увеличению выработки газового вещества;
  2. Поверхностную площадь пластин прямо влияет на продуктивность;
  3. Тепловой баланс и степень концентрации электролита;
  4. Материал электродных компонентов. Золото считается дорогим, но замечательным материалом для использования в электролизерах. Из-за его большой стоимости иногда используют нержавейку.

Главное! В конструкциях иного типа значения будут иметь другие параметры.

Установки для электролиза воды могут также применяться для таких целей, как обеззараживание, очистка и оценка качества воды.

Получение водорода электролизом воды

Получение чистого водорода путем электролиза воды — самая очевидная и эффективная технология, и один из наиболее перспективных способов получения альтернативного топлива. Водород добывают из любого водного раствора, а при сгорании он превращается обратно в воду.

По сравнению с прочими методами получения водорода, электролиз воды отличается целым рядом преимуществ. Во-первых, в ход идет доступное сырье — деминерализованная вода и электроэнергия. Во-вторых, во время производства отсутствуют загрязняющие выбросы. В-третьих, процесс целиком автоматизирован. Наконец, на выходе получается достаточно чистый (99,99%) продукт. Из всех методов электролиза наиболее перспективным считают высокотемпературный электролиз (себестоимость водорода от 2,35 до 4,8 $/кг). Его следует иметь на технологическом вооружении, поскольку при определенных экономических условиях он может быть использован в крупнопромышленном масштабе.

Электролизом воды называется физико-химический процесс, при котором под действием постоянного электрического тока дистиллированная вода разлагается на кислород и водород. В результате разделения на части молекул воды, водорода по объему получается вдвое больше, чем кислорода. Эффективность электролиза такова, что из 500 мл воды получается около кубометра обоих газов с затратами около 4 квт/ч электрической энергии.

Технологический ток для протекания процесса электролиза воды для получения водорода и кислорода получается, как правило, при помощи промышленного выпрямителя с необходимыми рабочими параметрами, Обычно это напряжение до 90В и силой тока до 1500 А. Подходящим агрегатом является Пульсар СМАРТ.

На электронном дисплее выпрямителя Пульсар СМАРТ или в специальном ПО для компьютера можно контролировать все стадии процесса производства, что позволяет оператору следить за параметрами, и круглосуточно журналировать протекание технологического процесса. Полностью автоматическая работа, включающая непрерывный мониторинг всех параметров для безаварийного функционирования без надзора оператора. Все параметры, касающиеся напряжения и силы тока постоянно измеряются и контролируются микропроцессором выпрямителя. Более того, все контролируемые параметры фиксируются устройством, которое в случае сбоя или отклонения может автоматически остановить процесс и сигнализирует об этом при помощи световой колонны.

Выпрямители тока серии Пульсар СМАРТ разработаны в соответствии с самыми высокими требованиями промышленной эффективности и международными стандартами. При этом технологическое программное обеспечение допускает гибкую адаптацию к требованиям Заказчика, и постоянно совершенствуется.

Эффективные способы получения водорода

В настоящее время извлечение водорода чаще всего выполняется двумя способами:

  • Концентрирование водорода при помощи мембранных установок. Данный метод разделения газообразных смесей позволяет с минимальными потерями выделять водород из газовых потоков. К основным преимуществам мембранных установок, позволяющих концентрировать водород в, можно отнести низкие расходы на техническое обслуживание, простое аппаратурное оформление и длительный срок службы мембран. Стоит отдельно отметить, что мембранные установки отличаются высокой гибкостью, которая реализуется при создании модульных систем, позволяющих быстро изменять масштаб производства водорода. Еще одним важным достоинством этого способа получения водорода является доступная стоимость оборудования, обусловленная целым рядом особенностей производства и монтажа мембранных установок;
  • Извлечение водорода с помощью адсорбционных установок. В основе этого метода получения чистого водорода лежит технология короткоцикловой или сверхкороткоцикловой адсорбции при переменном давлении. Эта технология использует принцип поглощения примесей водородсодержащего газа на поверхности специально разработанных адсорбирующих материалов. Количество удерживаемых адсорбентом примесей напрямую зависит от давления, поэтому данные установки по производству водорода позволяют проводить процесс адсорбции примесей и регенерации адсорбента изменением давления. Этим способом получают очень чистый водород, с минимальными потерями давления. Единственным минусом этого способа получения водорода можно назвать достаточно высокую стоимость.

Выбор метода получения водорода зависит от состава сырья, необходимой чистоты водорода, а также от режима эксплуатации, производственной мощности и других факторов, связанных со спецификой работы конкретного предприятия.

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10—14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.

Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Схема генератора мокрого типа Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

  1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7—15% раствор гидроокиси калия в воде.
  2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
  3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

Химические свойства водорода

Поскольку водород может быть в разных ситуациях и окислителем и восстановителем его используют для осуществления реакций и синтезов.

Окислительные свойства водорода взаимодействуют с активными (обычно щелочными и щелочноземельными) металлами, результатом этих взаимодействий является образование гидридов – солеподобных соединений. Впрочем, гидриды образуются и при реакциях водорода с малоактивными металлами.

Восстановительные свойства водорода обладают способностью восстанавливать металлы до простых веществ из их оксидов, в промышленности это называется водородотермией.

Основные способы получения металлов

Одним из основных способов получения металлов является их восстановление из оксидов. Это одно из самых распространенных соединений металлов, которые встречаются в природе. Процесс восстановления протекает в доменных печах под воздействием высоких температур и при участии металлических или неметаллических восстановителей. Из металлов используют элементы с высокой химической активностью, например, кальций, магний, алюминий.

Среди неметаллических веществ применяются оксид углерода, водород и коксующиеся угли. Суть процедуры восстановления заключается в том, что более активный химический элемент или соединение вытесняет металл из оксида и вступает в реакцию с кислородом. Таким образом, на выходе образуется новый оксид и чистый металл. Это самый распространенный способ получения металлов в современной металлургии.

Обжиг является лишь промежуточным методом получения чистого элемента. Он предполагает сжигание сульфида металла в кислородной среде, в результате чего образуется оксид, который затем подвергается процедуре восстановления. Этот метод также применяется довольно часто, так как сульфидные соединения широко распространены в природе. Прямое получение чистого металла из его соединений серой не используют по причине сложности и дороговизны технологического процесса. Гораздо проще и быстрее провести двойную обработку, как было указано выше.

Электролиз, как способ получения металлов подразумевает пропускание тока через расплав металлического соединения. В результате процедуры чистый металл оседает на катоде, а остальные вещества — на аноде. Такой способ применим к солям металлов. Но он не является универсальным для всех элементов. Подходит способ для получения щелочных металлов и алюминия. Это связано с их высокой химической активностью, которая под воздействием электрического тока позволяет с легкостью нарушать установленные в соединениях связи. Иногда электролитический способ получения металлов применяют к щелочноземельным элементам, но они уже не так хорошо поддаются данной обработке, а некоторые и вовсе не разрывают полностью связь с неметаллом.

Последний способ — разложение происходит под воздействием высоких температур, которые позволяют разорвать связи между элементами на молекулярном уровне. Для каждого соединения потребуется свой температурный уровень, но в целом метод не содержит каких-либо хитростей или особенностей. Единственный момент: полученный в результате обработки металл, может потребовать проведения процедуры спекания. Но этот способ позволяет получить практически на 100% чистый продукт, так как для его проведения не применяются катализаторы и другие химические вещества. В металлургии способы получения металлов называют пирометаллургическим, гидрометаллургическим, электрометаллургическим и термическим разложением. Это четыре приведенных выше способа, только названные не по химической, а по промышленной терминологии.

Получение водорода в промышленности

Одним из промышленных способов получения водорода является реакция разложения воды под действием электрического тока:

Данный метод позволяет получить чистый водород и кислород. Процесс превращения химических веществ в другие вещества под действием электричества называется электролизом.

Электролиз – химическая реакция, протекающая под действием электрического тока Проведем электролиз воды. В стакан наполненный водой, опустим металлические электроды. Поверх электродов опустим в стакан пробирки, заполненные водой. Подсоединим электроды к источнику тока – батарейке. В пробирках наблюдается выделение газов – водорода и кислорода, которые вытесняют воду. Наблюдая за процессом электролиза, можно заметить, что в одной из пробирок газа собирается в два раза больше, чем в другой. Проанализировав уравнение реакции электролиза воды, можно сделать вывод, в какой пробирке выделяется водород, а в какой – кислород. Попробуйте это сделать самостоятельно.

Существуют и другие способы получения водорода. Железо-паровой метод долгое время широко применялся в промышленности. Через электрическую трубчатую печь проходит трубка из нержавеющей стали, заполненная железными стружками. Через трубку с железными стружками пропускают водяной пар. При температуре около 800°С пары воды взаимодействуют с железом, образуя оксид Fe3O4 (железную окалину) и газообразный водород:

Можно получить Н2, пропуская Н2О через слой раскаленного угля. При этом образуется смесь двух газов – СО и Н2 (водяной газ):

В настоящее время водород получают взаимодействием углеводородов (в основном метана, СН4) с водяным паром или неполным окислением метана кислородом:

Итог статьи:

  • В лаборатории водород получают в аппарате Киппа
  • Исходными веществами для получения водорода в лаборатории являются некоторые металлы и кислоты
  • Собирать водород нужно методом вытеснения воды, или методом вытеснения воздуха, расположив пробирку вверх дном по отношению к газоотводной трубке
  • Кислота – сложное вещество, в состав которого входят атомы водорода и кислотный остаток
  • Обнаружить водород можно по характерному хлопку при поднесении пробирки с водородом к пламени
  • Одним из промышленных способов получения водорода является электролиз воды
  • Электролиз – химическая реакция, протекающая под действием электрического тока
  • https://promzn.ru/drugoe-proizvodstvo/poluchenie-vodoroda.html
  • https://mr-build.ru/newteplo/kak-polucit-vodorod.html
  • https://weldering.com/sposoby-polucheniya-vodoroda
  • https://biznesprost.com/otkryt-biznes/proizvodstvo-vodoroda.html
  • https://idaten.ru/chemistry/poluchenie-vodoroda
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector